

US-54 Central Business District Viaduct

KDOT Project No. 54-87 KA-1647-02

Bridge No. 54-87-25.88 (374)

Bridge No. 54-87-25.95 (375)

Bridge No. 54-87-25.94 (376)

Bridge No. 54-87-25.86 (377)

BRIDGE REHABILITATION

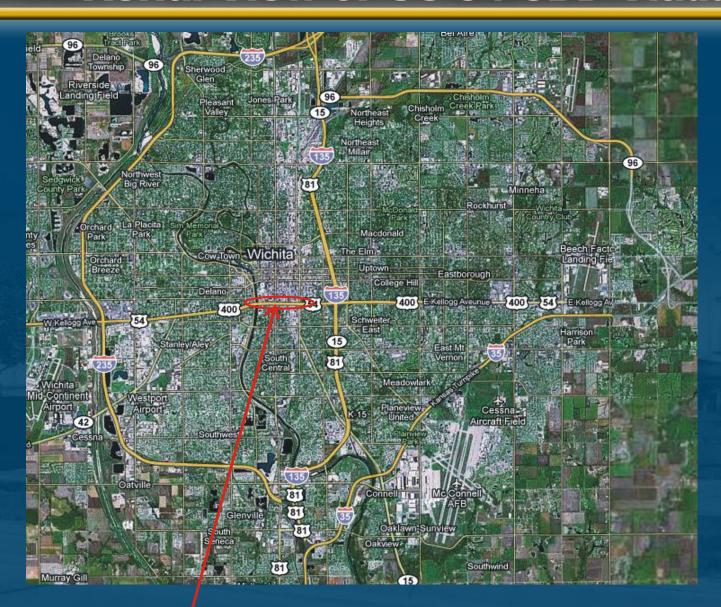
City of Wichita, Sedgwick County

Presented to:

Presented by:

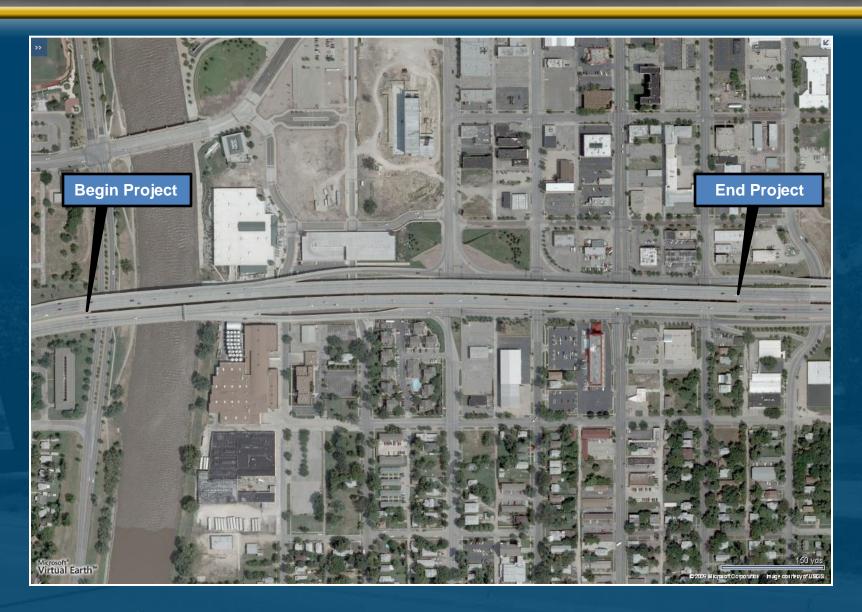
Abdul Hamada, P.E. Nichole Witushynsky, P.E.

October 9, 2015

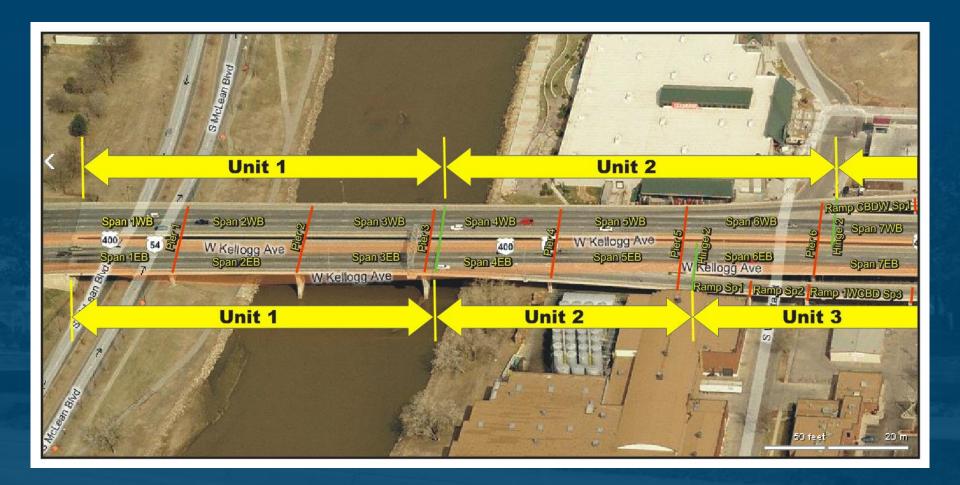


Presentation Outline

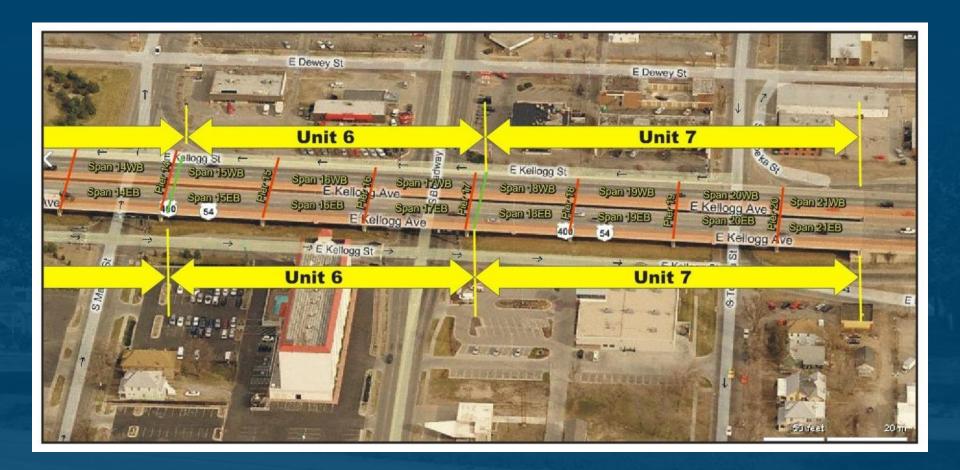
- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions

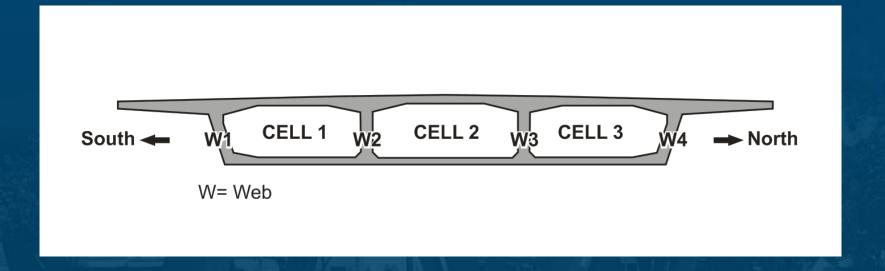


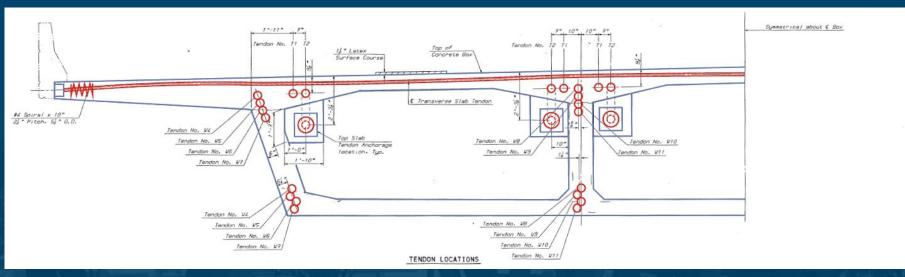
Aerial View of US-54 CBD Viaduct

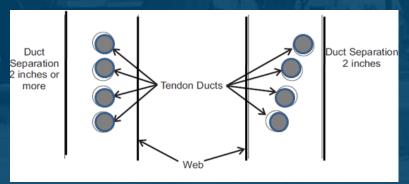


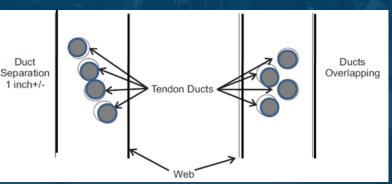
Aerial View of US-54 CBD Viaduct



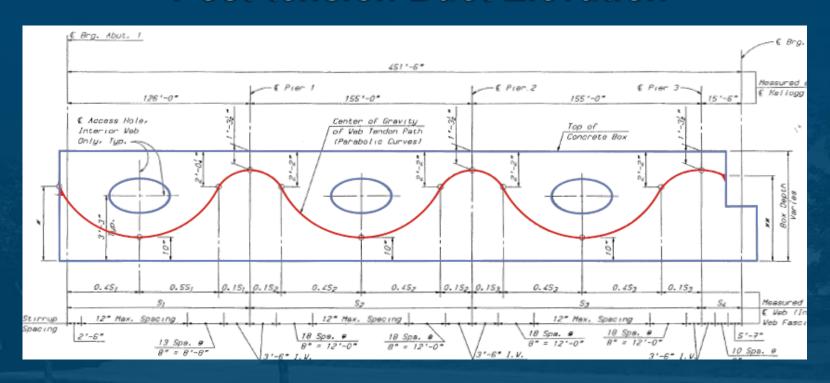


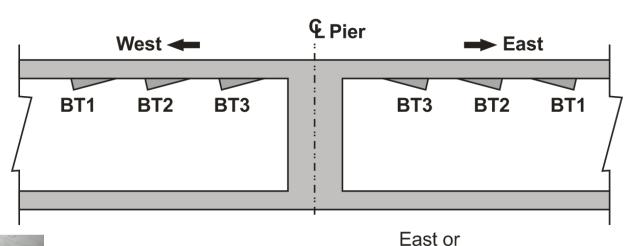



Segmental Box Cross Section

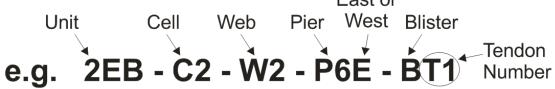


Post-tension Duct Cross Section





Post-tension Duct Elevation



Post Tension Duct Anchorages

Presentation Outline

- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions

Sunshine Skyway Bridge, FL

Sunshine Skyway Bridge, FL

Column 133 NB NE Tendon

Mid Bay Bridge, FL

Pier 13 Center Web Vertical Tendon 3

Void in Pier With Dywidag Bar Instead of Tendons

Span 9 Westbound Draped Web Tendon 21

Corrosion on Duct

Pier 14 Werstbound Vertical Tendon 8

View of Void Bottom Corrosion on Duct and Tendons

Pier 14 Eastbound Vertical Tendon 5

Corrosion on Both Duct and Tendon

Pier 14 Westbound Vertical Tendon 2

Close-up of Anchor. Top of Tendons Show some Corrosion

Pier 14 Center Web Vertical 3

Tendon Found with Standing Water inside

US-54 Wichita CBD Viaduct, KS

Project Issues

Known Project Issues (prior to investigation)

- PT Tendons used old generation of grout material and procedures
- Old generation of post-tensioning hard-wares system
- Lack of anchorage corrosion protection system
- The presence of PT blisters, deck, and web cracks
- In-span hinge

Investigation Strategy

- Phase 1: Planning
- Phase 2: Walk-through inspection
- Phase 3: Limited site investigation
- Phase 4: Report of Condition
 assessment and recommendations
- Phase 5: Completion of the investigation and repair plans
- Phase 6: Rehabilitation

Project Timeline Highlights

- US 54 CBD Preliminary Engineering for Investigation and Evaluation: NTP / project award on 8/20/2009
- Visual Site Inspection : October 16 to 21, 2009
 - Final Report submitted in November 2009
- Limited Site Investigation : Dec. 15, 2009 to March 27, 2010
 - Final Report submitted in June 2010
- Project Repair Plans:
 - Final Plans submitted in June 2013
- Bridge Rehabilitation: April 2014 to June 2014
 - Final Report submitted in October 2014

Limited Site Investigation

Tested 10% Critical PT Elements

Tendon Type	Number Tested	Number with Voids	Percentage Voided	Total Feet Tested	Approximate Feet Voided
Longitudinal Web	32	19	59%	5,718 Feet	630 Feet
Longitudinal Top Slab	67	6	8.9%		
Hinge	6	0	0		
Diaphragm	11	3	27%		
Transverse Top Deck	4	1	25%		

Strategically selected elements were inspected

Site Investigation

Tested ALL Accessible Critical PT Elements

- Draped Web tendons: 46% of tendons inspected have voids
- Longitudinal Top tendons: 6% of tendons inspected have voids
- Diaphragm Transverse Tendons: 25% tendons inspected have voids
- ◆ Transverse Deck Tendons: 5% tendons inspected have voids
- Hinge Tendon: 5% of tendons inspected have voids
- Soft grout in the duct at six locations
- ♦ Water in the duct at multiple locations; some voids dry
- Low rates of corrosion at present

Grout Repair

Repair Options

- Vacuum Grouting
- Vacuum Assist Grouting
- Pressure Grouting

Note: Due to tendon failure of Varina-Enon Bridge in Virginia after re-grouting of the tendon, there is a concern on the potential formation of corrosion cell when re-grouting of old / existing grout with new grout. "Dissimilar Grout Research" was initiated by PB/KDOT

Grout Sampling

Existing Grout

- Showed presence of portland cement based grout
- Showed negligible chloride content

Sample	pH, 1:1 by mass
Sample 1 Station 14	12.74
Sample 2 Station 87	12.54
Sample 3 Tendon T1	12.61

Sample	Acid-Soluble Chloride, % by mass of sample
Sample 1 Station 14	< 0.006
Sample 2 Station 87	0.030
Sample 3 Tendon T1	< 0.006

KU Dissimilar Grout Research

Research Approach

- Determine if using a second grout will provide improved corrosion protection for prestressing strands or result in accelerated corrosion
- Determine the possible consequences of leaving the voids unfilled

Testing Methods

- Half-cell Potential Test (probability of corrosion)
- Macro-cell Current Test
- Linear Polarization Resistance (corrosion rate)

FDOT Dissimilar Grout Research

Grouting Systems Examined

- SikaGrout 300PT (Sika Corp.)
- MasterFlow MB1205 High Performance Duct Grout

Testing Methods

- Half-cell Potential Test (probability of corrosion)
- Macro-cell Current Test
- Linear Polarization Resistance (corrosion rate)
- Electrochemical Impedance Spectroscopy (corrosion rate)
- Chemical analysis and pH of grouts

Research Results

KU/FDOT Conclusions

- Leaving prestressing strands <u>unprotected</u> from elements has the potential to result in <u>rapid corrosion</u> of the exposed strands
- Significant corrosion activity developed in the presence of bleed water
- When paired with Portland cement grout, the <u>pre-packaged anti-bleed</u> grouts resulted in <u>corrosion losses</u>
- Of the anti-bleed grout materials evaluated, <u>Masterflow 1205</u> appears superior

Condition of Bridge

LFD Load Rating

BRIDGE NO.: 54-87-25.95 (375)

CARRIES: US 54 WESTBOUND (WB KELLOGG CBD VIADUCT)

	INVENTORY RATING				OPERATING RATING								
	LOAD FACTOR METHOD				LOAD FACTOR METHOD								
BRIDGE COMPONENT	(RATING FACTOR)				(RATING FACTOR)								
	H TYI	TYPE	HS	TYPE	TYPE	Н	TYPE	HS	TYPE	TYPE	T130	T170	HET
		3		3S2	3-3		3	пъ	13S2	3-3			
TRANSVERSE - MULTI CELL													
Serviceability Concrete	1.87	2.49	1.73	2.49	2.49	3.66	4.93	3.42	5.16	5.93	4.58	4.10	2.31
LFD - Flexural Strength	2.64	3.15	2.26	3.37	3.82	4.41	5.26	3.78	5.61	6.36	4.05	3.52	2.18
LONGITUDINAL													
Serviceability Concrete	1.28	1.10	0.79	0.88	0.88	2.05	1.76	1.26	1.41	1.41	1.52	1.40	0.78
LFD - Flexural Strength	2.05	1.65	1.15	1.18	1.12	3.42	2.76	1.92	1.97	1.86	1.70	1.46	0.90
LFD - Shear Strength	2.04	2.18	1.67	1.61	1.56	3.40	3.64	2.78	2.69	2.61	2.85	2.53	1.42

For Joint Locations of Transverse Top Deck and Longitudinal Box Girder, see Appendix C.

BRIDGE 375 - SUMMARY OF BRIDGE RATING

CITY (COUNTY): WICHITA (SEDGWICK)

BRIDGE NO.: 54-87-25.95 (375)

CARRIES: US 54 WESTBOUND (WB KELLOGG CBD VIADUCT)

OVER: LOCAL URBAN STREETS, ARKANSAS RIVER

RATINGS (TONS)

Load Factor Ratings for Load Posting Purposes Load Ratings in English Tons						
VEHICLE TYPE	OPERATING					
Н	25.6	41.0				
TYPE 3	27.5	44.0				
HS	28.4	45.3				
TYPE 3S2	31.6	50.7				
TYPE 3-3	35.2	56.4				
T130		98.8				
T170		119.0				
Heavy Equip. Transporter		85.7				

MS18 Load Factor Ratings in Metric Tons (tonne)							
Provided in Compliance with the Decemeber 1995							
FHWA NBIS Coding Guide							
INVE	NTORY	OPERATING					
Item 66	MS Equivalent	Item 64	MS Equivalent				
25.7	25.7 14.3 41.0 22.8						

Presentation Outline

- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions

Access (exterior)

Access (Span 3)

Access (Span 1)

Access (interior)

NDT Inspection

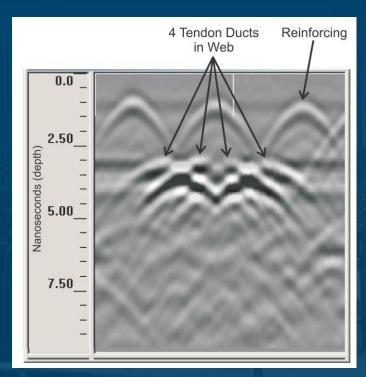
Non-destructive Testing

- Void detection by sonic/ultrasonic testing concrete
- All accessible draped web, longitudinal top deck, diaphragm, and transverse tendons were tested

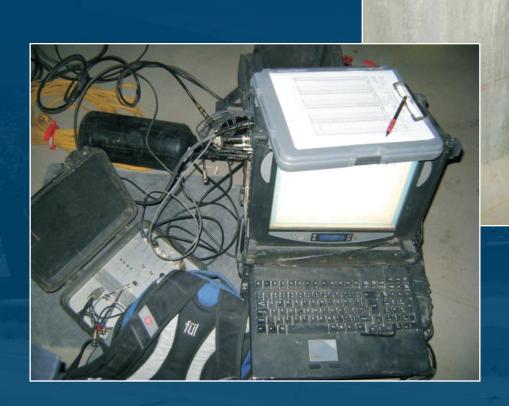
Verification Testing

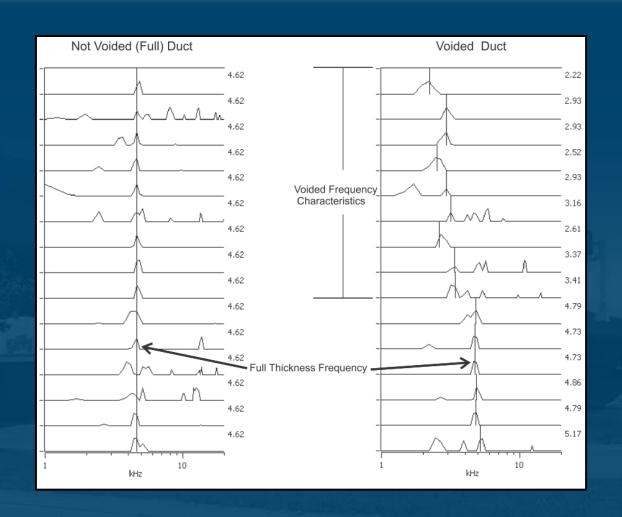
- Void verification by drilled holes identified by sonic testing
- Boroscope used to find limits of void

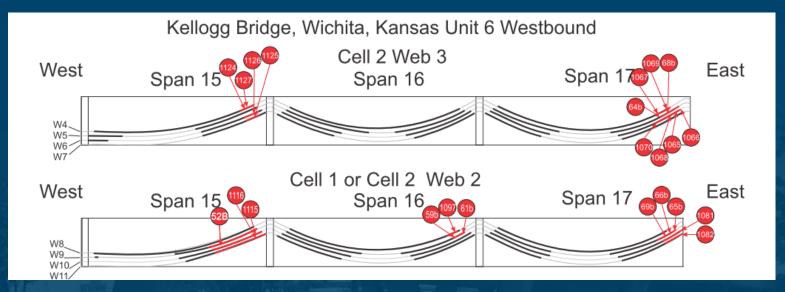
US-54 VIADUCT, WICHITA, KANSAS

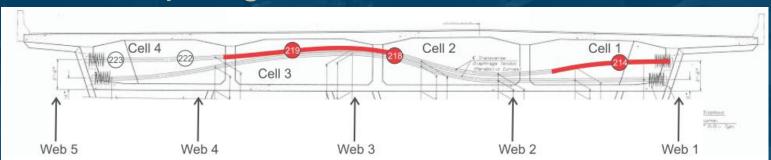

NDT & DT INSPECTION KDOT PROJECT No.: 54-87 KA-1647-01

PREPARED FOR PB Americas, Inc. April, 2013









Inspection Findings

Web Post-tensioned Ducts

Diaphragm Post-tensioned Ducts

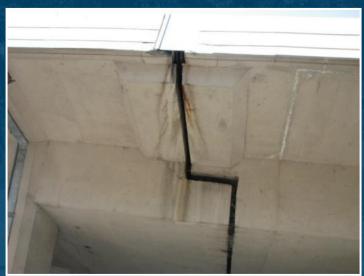
Inspection Findings

Inspection Findings

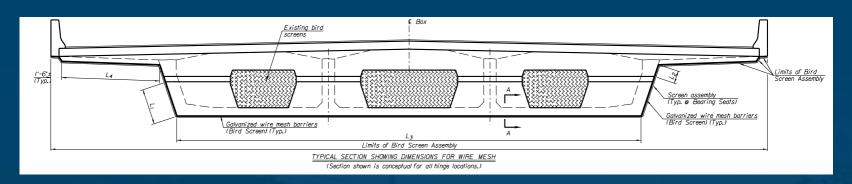
Presentation Outline

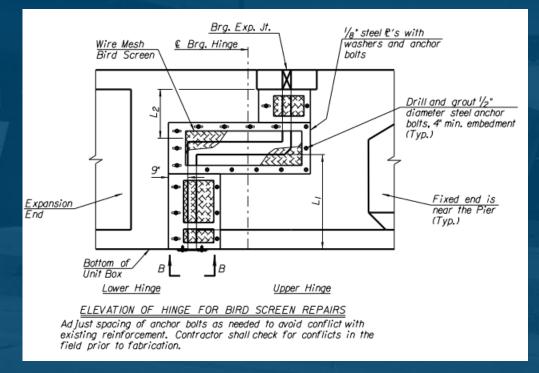
- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions

Presentation Outline

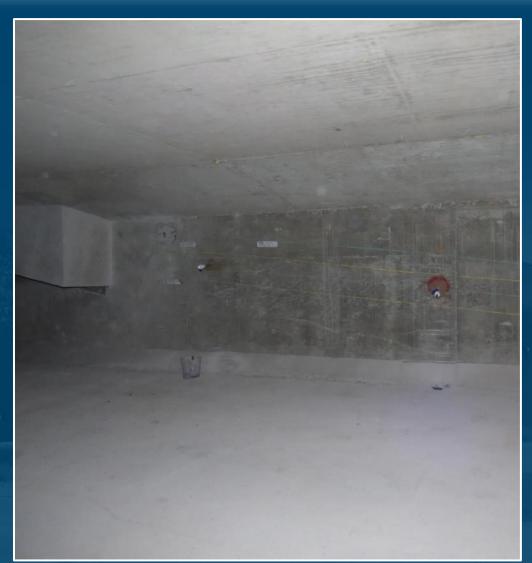

- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions

Bridge Interior





Repair Plans



Bird Screens

Bridge Interior

Presentation Outline

- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions

Concrete Cracks

Concrete Crack Repair

EPOXY RESIN CRACK REPAIR: Pressure inject epoxy grout into the cracks on the Blisters and Webs in accordance with the manufacturer's specifications and as directed by the Engineer. Repair the cracks that are 0.02" wide or larger. Work shall be performed by individuals qualified to work with this form of rehabilitation. Pay limits for this bid item are estimated crack lengths. Perform work and supply materials and equipment in accordance with KDOT specifications (Section 730). All work and materials required shall be included in the bid item "Bridge Repair", Lump Sum.

Presentation Outline

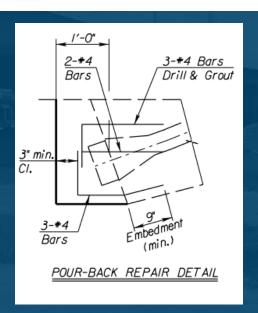
- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions

Blister / Tendon Anchorages

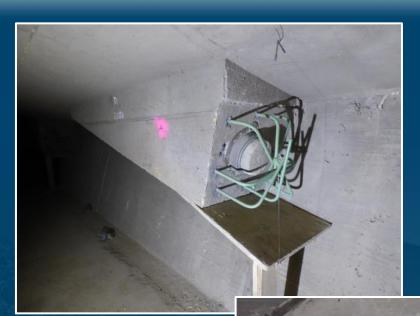
Repair Plans

NO POUR-BACK
(Type I)
(Anchor Only)

PARTIAL POUR-BACK (Type 2)

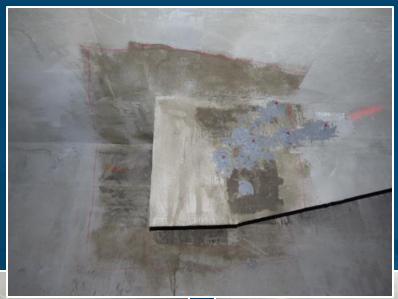


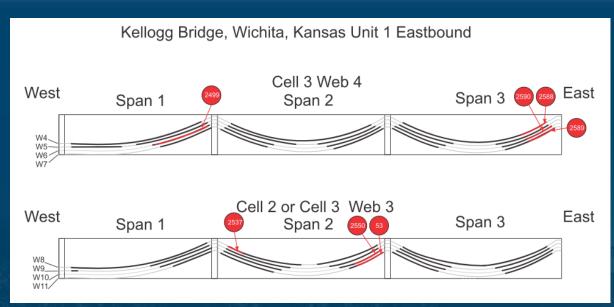
FULL POUR-BACK (Type 3)

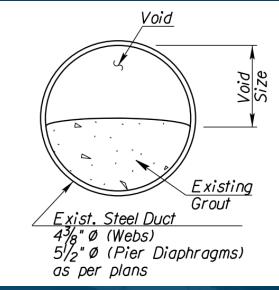

EXISTING POUR-BACK CLASSIFICATION

EAS	TBOUND	TABLE O	F BLISTER	POUR-BACKS	
UNIT NO.	SPAN NO.	STR.	NUM. OF BLISTERS	TYPE OF ANCHOR	
1	1	EB	12	Partial	
1	2			Partial	
/	3			Partial	
2	4	EB	8	Full	
2	5	EB	16	Partial	
3	6	EB	12	Anchor Only	
3	7	EB	24	Anchor Only	
3	8	EB	16	Anchor Only	
4	9	EB	12	Anchor Only	
4	10	EB	20	Anchor Only	
4	//	EB	8	Anchor Only	
5	12	EB	No Blisters	-	
5	/3	EB	4	Partial	
5	14	EB	4	Partial	
6	15	EB	No Blisters	-	
6	16	EB	4	Full	
6	17	EB	4	Full & Partial	
7	18	EB	No Blisters	-	
7	19	EB	4	Partial	
7	20	EB	4	Partial	
7	21	EB	No Blisters	-	

WE	ST BOUI	VD TABLE	OF BLISTE	R POUR-BACKS	
UNIT NO.	SPAN NO.	STR.	NUM. OF BLISTERS	TYPE OF ANCHOR	
/	1	WB	12	Anchor Only	
/	2	WB	24	Anchor Only	
/	3	WB	18	Anchor & Partial	
2	4	WB	8	Anchor Only	
2	5	WB	16	Anchor Only	
2	6	WB	16	Anchor Only	
3	7	WB	12	Anchor Only	
3	8	WB	16	Partial	
4	9	WB	12	Anchor Only	
4	10	WB	20	Partial	
4	//	WB	8	Partial	
5	12	WB	No Blisters	-	
5	/3	WB	4	Partial	
5	14	WB	4	Partial	
6	15	WB	No Blisters	-	
6	16	WB	4	Partial	
6	17	WB	4	Partial	
7	18	WB	No Blisters	-	
7	19	WB	4	Anchor Only	
7	20	WB	4	Anchor Only	
7	21	WB	No Blisters	-	

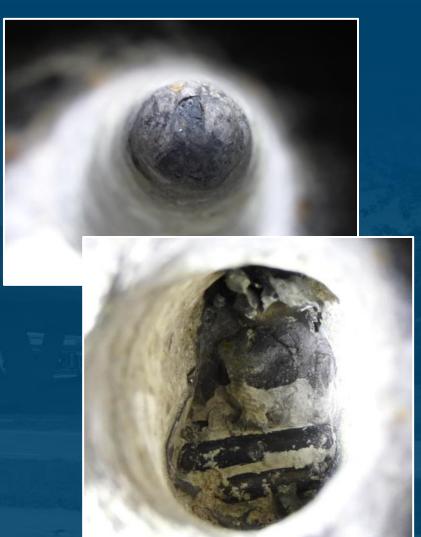




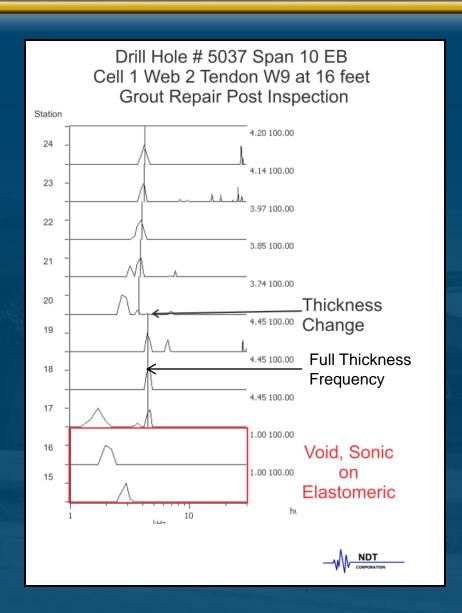


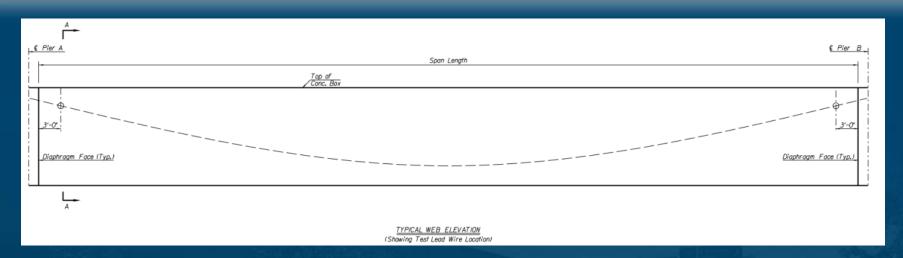
Presentation Outline

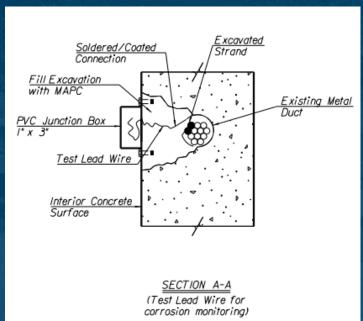
- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions



Presentation Outline


- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions




Presentation Outline

- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions

Repair Plans

* The listed tendons contain Soft Grout and will be monitored for potential corrosion as shown on this sheet See elevation view for location of test lead wires.

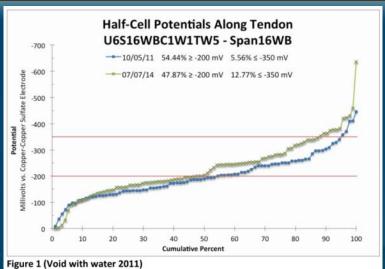
Testing per ASTM C876

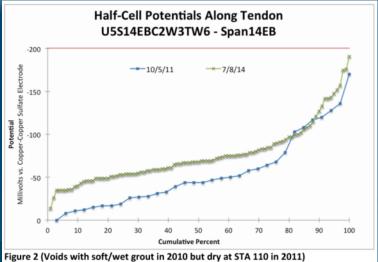
	* TEST LEAD WIRE LOCATIONS					
UNIT NO.	SPAN NO.	DIR.	CELL NO.	WEB NO.	TEND. NO.	QUANTITY EACH
3	6	EB	2	2	W8	2
3	8	EB	2	2	W8	2
4	//	EΒ	2	2	W9	2
5	14	EB	2	3	W6	2
W-CBD	3	-	-	2	W/	2
W-CBD	3	-	-	2	W3	2
W-CBD	4	-	-	2	W/	2
W-CBD	4	-	-	2	W3	2

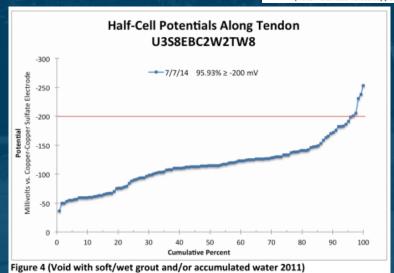
I	WATER FILLED TENDON						٧
	UNIT NO.	SPAN NO.	DIR.	CELL NO.	WEB NO.	TEND. NO.	DEFICIENCY
l	6	16	WB	/	- 1	W5	Water
I							

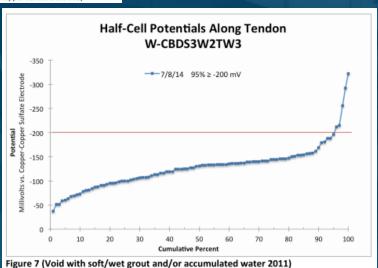
This Tendon shall be drained and re-grouted as per project plan notes.

Test Lead Wires







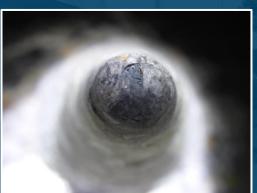

Half-Cell Potential Readings

- More positive than -200 mV: 90% probability of no corrosion
- Range of -200 and -350 mV: Corrosion is uncertain
- More negative than -350 mV: 90% probability of corrosion (Note: Potentials versus copper copper-sulfate electrode)

Presentation Outline

- Introduction
- Background
- Site Investigation
- Bridge Repair Plans & Repairs
 - Clean Bridge & Install Bird Screens
 - Epoxy Resin Crack Repair
 - Blister Pour-backs/Anchorage Repair
 - Duct Grouting Operations
 - NDT Grout Verification
 - Test Lead Wire Installation
- Conclusions

- 14 Bird Screens
- 1,236 Linear Feet of Crack Repair (>0.020" wide)
- 268 Blister Pour-Backs Replaced
- 380 Blister Pour-Backs Coated (all in bridge)
- ◆ 147 Voids Filled (with 142 ft³ grout, approx. 290 bags)
 - 15% vacuum grouted
 - 1% vacuum assist
 - 84% pressure grouted
- 119 Tendons Tested by NDT for Verification
 - 119 tendons tested by sonic/ultrasonic (80% of filled voids)
 - 64 tendons verified by drilled holes (43% of filled voids)
 - 1 voided tendon found, re-grouted on 8/20/2014
- 18 Test Lead Wires (on 9 tendons)



SUCCESS!

Recognition

- Ken Hurst & Loren Risch KDOT State Bridge Engineer
- Mark Hurt KDOT Sr. Squad Leader
- Calvin Reed KDOT State Bridge Engineer (current)
- Annette Ratcliff KDOT Inspector
- Hideki Fields KDOT Construction Engineer
- Pci Roads Contractor
- VSL Subcontractor
- NDT Corporation Field Investigation
- Rodney Powers & Associates Field Investigation
- Wildcat Construction Field Investigation
- University of Kansas Dr. David Darwin
- PB Staff
 - Teddy Theryo Technical Director
 - Rick Earley ASBI Certified

Questions?

